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Improving wood properties for wood utilization
through multi-omics integration in lignin
biosynthesis
Jack P. Wang1,2, Megan L. Matthews3, Cranos M. Williams3, Rui Shi2, Chenmin Yang2,

Sermsawat Tunlaya-Anukit2, Hsi-Chuan Chen2, Quanzi Li4, Jie Liu2, Chien-Yuan Lin2,5, Punith Naik6,

Ying-Hsuan Sun7, Philip L. Loziuk8, Ting-Feng Yeh9, Hoon Kim 10, Erica Gjersing11, Todd Shollenberger11,

Christopher M. Shuford8, Jina Song 3, Zachary Miller12, Yung-Yun Huang13, Charles W. Edmunds12,

Baoguang Liu14, Yi Sun1, Ying-Chung Jimmy Lin1,2,15, Wei Li1,2, Hao Chen2, Ilona Peszlen12, Joel J. Ducoste6,

John Ralph 10, Hou-Min Chang12, David C. Muddiman8, Mark F. Davis 5, Chris Smith16, Fikret Isik17,

Ronald Sederoff2 & Vincent L. Chiang1,2,12

A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the stra-

tegic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three

monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of

Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24

metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway

genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines

selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how

changing expression of pathway gene or gene combination affects protein abundance,

metabolic-flux, metabolite concentrations, and 25 wood traits, including lignin, tree-growth,

density, strength, and saccharification. The analysis then predicts improvements in any of

these 25 traits individually or in combinations, through engineering expression of specific

monolignol genes. The analysis may lead to greater understanding of other pathways for

improved growth and adaptation.
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Wood has long been used as construction material and
for pulp and paper production. Such uses are in
considerable part determined by the properties of

lignin in wood. Removal of lignin is the key step in pulp and
paper production and the conversion of biomass to liquid bio-
fuels. Lignin was discovered in wood by Anselme Payen in 1839
as the incrusting material that must be removed to isolate wood’s
useful fiber, cellulose1. Lignin is a major phenolic polymer in
plant secondary cell walls and is formed predominately from the
oxidative polymerization of three major monolignols, 4-coumaryl
alcohol (H-subunit, 20, Fig. 1), coniferyl alcohol (G-subunit, 22),
and sinapyl alcohol (S-subunit, 24)2 in angiosperms. The
monolignols polymerize around a framework of cellulose and
hemicelluloses to form secondary cell walls in trees to make
wood. Despite more than half a century of investigation, there is
not yet a fundamental quantitative basis for understanding the
regulation of lignin biosynthesis and its effects on the properties
and utilization of wood.

We now present a quantitative multi-omics integration of the
regulation of lignin biosynthesis in wood formation in the model
woody plant Populus trichocarpa (Torr. & Gray) that improves
wood properties for utilization. The genome sequence of P. tri-
chocarpa3 identified the genes for the biosynthesis of lignin from
its monolignol precursors4. A core set of 21 genes4 (known at the
onset of this study) encode specific enzymes that mediates a
biosynthetic pathway of 37 metabolic-fluxes converting pheny-
lalanine (1, Fig. 1) through 24 intermediate metabolites into the
three monolignols (20, 22, and 24)5 for lignin formation that
determines wood properties. Using transgenic P. trichocarpa, we
systematically integrated five levels of regulation (genomic,
transcriptomic, proteomic, fluxomic, and phenomic, Fig. 1,
Fig. 2a, b) to quantify the effects of the expression of monolignol
biosynthetic pathway genes on wood properties and wood utili-
zation, such as saccharification (extraction of sugars) (Fig. 2c).

Results
Overall approach. The five level multi-omics integrative analysis
involves three major steps (1–3, Fig. 2b). (1) Quantifying the
relationships between the abundances of gene-specific transcripts
and proteins. (2) Establishing the effects of gene-specific pathway
protein abundances on metabolic-flux and metabolite con-
centrations. (3) Quantifying the effects of predicted metabolic-
flux and metabolite concentrations on specific end products
(lignin and other wood properties, Fig. 2c). We defined these
relationships through xylem-specific transgenic perturbation of
the 21 monolignol pathway genes (Fig. 2a, Supplementary
Table 1; Supplementary Data 1) to provide a broad range of
variation in the levels of gene expression and the downstream
responses. Many of these genes are phylogenetically paired
members within different gene families4. We therefore used RNA
interference constructs (types I–III, Supplementary Fig. 1a) to
downregulate individual genes, gene-pairs or gene families.
Artificial microRNA constructs (type IV, Supplementary Fig. 1a)
were also designed to target the specific downregulation of single
genes within gene families. We generated ~2000 transgenic P.
trichocarpa trees and selected 221 independent lines showing
varying degrees of gene downregulation (Supplementary Table 1,
Supplementary Data 1, Supplementary Note).

Monolignol biosynthetic genes are abundantly expressed in
both fiber and vessel cells (the key wood-forming cells;
Supplementary Fig. 1b) in stem-differentiating xylem. We
isolated the stem-differentiating xylem from the transgenics and
wildtype and analyzed 239 full transcriptomes and 239 proteomes
to regress the abundances of transcripts and proteins (Fig. 2a, b).
Using recombinant proteins from the 21 monolignol pathway

genes used in this study, we determined 207 reaction and
inhibition enzyme kinetic parameters to predict the effects of
protein abundances on pathway metabolic-fluxes and metabolite
concentrations (Fig. 2a, b, Supplementary Data 9)5–8. To
determine the effects of metabolic-fluxes and metabolite con-
centrations on lignin and wood properties, we quantified the
chemical composition of 220 wood samples, and 76 lignin
samples using 2D HSQC NMR for lignin composition and
structures (Fig. 2a, b, Supplementary Note describes the number
of samples used for each quantification). We measured the
growth of 221 lines, the modulus of elasticity (MOE) of 416 wood
samples, the density of 213 wood samples, and tested 236 wood
samples for saccharification efficiency (Fig. 2a, b, Supplementary
Note). All these data were then systematically integrated to
describe the transduction of biological information from the 21
monolignol genes through transcripts, proteins, metabolic-fluxes,
and metabolite concentrations, leading to specific lignin and
wood properties (Fig. 2a–c).

Monolignol gene transcript and protein relationships. We
analyzed the whole transcriptomes of the stem-differentiating
xylem of 221 transgenics and 18 wildtypes by RNA-seq (GEO
accession number: GSE78953) (Supplementary Fig. 1c, d).
Transgenic suppression provided broad variation in the levels of
monolignol gene expression (Supplementary Fig. 2). Variation in
gene expression arose from (1) targeted transgene suppression,
(2) indirect (non-targeted) effects of other monolignol transgenes,
and (3) seasonal and environmental effects (Supplementary Note,
Supplementary Fig. 3). Targeted transgenesis always resulted in a
wide range of target gene suppression (Fig. 3a, Supplementary
Data 1). For example, the targeted transgenic suppression of
PtrPAL1 expression ranged from 18.4 (i8-8-2, Fig. 3a) to 92.5%
(i6-9-3) of the parental wildtype level. PtrPAL1 was also sup-
pressed by homologous transgenes of its family members, such as
PtrPAL3 (Fig. 3b), and to a lesser extent, by transgenes of
members from other families, such as PtrAldOMT2 (Fig. 3b),
through gene interactions. The indirect effect of genetic interac-
tions was observed for many monolignol genes, suggesting
unknown higher-order regulation (Fig. 3b). Seasonal and envir-
onmental effects in the greenhouse (Supplementary Note) also
contributed to variations in transcript abundance, as seen for
PtrPAL1 expression in the wildtypes (white bars, Fig. 3a). These
variations provided a broad range of gene expression to correlate
transcript abundance and protein abundance, and increased the
power of the integrative analysis.

We determined the absolute quantities of the monolignol
biosynthetic proteins in the stem-differentiating xylem of the 239
transgenics and wildtype using protein cleavage-isotope dilution
mass spectrometry (PC-IDMS) and protein-specific stable-
isotope-labeled internal standards, following Shuford et al.
(2012)9. Specific reduction of protein abundance was observed
in the downregulated transgenics for all monolignol pathway
enzymes (Fig. 3b). Protein and transcript abundance for specific
monolignol genes showed significant positive linear relationships
(Fig. 4, Supplementary Fig. 2, Supplementary Table 2). We
assembled a simple linear regression equation for each mono-
lignol gene to describe the efficiency of translation of the
transcript to the protein (equations 1–20, Supplementary Data 2).
On average, each transcript molecule (inferred from RNA-seq,
Supplementary Note) produces a steady-state level of ~1.5 × 104

molecules of the protein (βi values, Supplementary Table 2).
Translation efficiencies are typically ~104 in eukaryotes and ~540
in prokaryotes10,11. Different monolignol genes showed drama-
tically different efficiencies (βi values, Supplementary Table 2,
Supplementary Note). The monolignol gene transcript abundance
explained on average 31% (coefficient of determination, R2=
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0.31) of the variation in protein abundance, which ranged from
53% (for PtrPAL2) to 3% (for PtrCCoAOMT3, a poor predictor)
(Supplementary Table 2, Supplementary Note). The protein

abundances predicted by the linear regressions were used in
mass-balance equations to estimate metabolite concentrations
and pathway reaction fluxes (Fig. 2b).
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Fig. 1 Our multi-omics integrative analysis of the monolignol biosynthetic pathway in P. trichocarpa predicts wood properties for wood utilization. The
pathway is represented by 21 monolignol genes (turquoise circles) identified from the genome sequence, and their corresponding transcripts (blue circles)
and proteins (red circles). The gene transcript abundances can be converted to protein abundances by specific βi values from linear regression models
(Supplementary Table 2). The monolignol proteins in a metabolic grid convert phenylalanine to monolignols in stem-differentiating xylem. The metabolic
grid consists of 24 metabolites (underlined numbers within structures), 37 reaction fluxes (white numbers on black circles), 104 reaction kinetic
parameters and 103 inhibition kinetic parameters. Other enzymes, regulators, and components are involved but genes encoding these factors are unknown
or not yet sufficiently characterized to be included in this study. Fluxes 16, 20, 21, and 26 were set to zero because kinetic parameters for these reactions
are not currently available. Colored lines represent pathway enzyme inhibitions. Multiple linear regressions predict the lignin and wood properties.
Abbreviations: Reduced nicotinamide adenine dinucleotide phosphate (NADPH), oxidized nicotinamide adenine dinucleotide phosphate (NADP+),
coenzyme A (CoA), adenosine triphosphate (ATP), adenosine monophosphate (AMP), pyrophosphate (PPi), S-adenosylmethionine (SAM), S-
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Metabolic fluxes for monolignol biosynthesis. We previously
measured 104 Michaelis–Menten kinetic parameters and 103
inhibition kinetic parameters for purified functional recombinant
proteins of 21 monolignol genes5,7. These 207 kinetic parameters
provide an approximation of the kinetic behaviors of the
monolignol enzymes in vivo. We integrated these 207 kinetic
parameters and the absolute quantity of monolignol proteins in
stem-differentiating xylem into 39 mass-balance equations to
predict the effects of changing the abundance of each pathway
protein on metabolic-flux, total lignin content, and lignin S/G
ratio5,7. We now extend these mass-balance equations (equations
21–59, Supplementary Data 2) to include the additional regula-
tion that comes from some specific protein–protein interactions12

(Methods) and the transcript/protein regression equations
(equations 1–20) to illustrate quantitatively how changes in the
pathway gene transcript levels affect protein abundance, meta-
bolite concentrations, metabolic-flux, and additional major lignin
properties. These new properties include the abundances of the
major lignin subunits (H, G and S) and their structural linkages,
as well as two non-monolignol phenolics in lignin, based on semi-
quantitative two-dimensional nuclear magnetic resonance
(2D NMR) of lignin from transgenic trees. The non-monolignol
phenolics are p-hydroxybenzoic acid and hydro-
xycinnamaldehydes (Fig. 2c, Fig. 1), which are usually present in
minor quantities in lignin of wildtype P. trichocarpa. In trans-
genics modified in the expression of specific monolignol genes,
the abundance of some of these non-monolignol phenolics
incorporated into lignin is elevated (Supplementary Note) and
affects wood properties (Supplementary Data 3–8).

Our current 59 equations (equations 1–59, Supplementary
Data 2) describe how changes in monolignol transcript
abundance affect protein abundances and the 37 metabolic-
fluxes and 24 metabolite concentrations in the pathway (Fig. 1).
We next characterized 25 major lignin and wood chemical and
physical properties (Fig. 2c; and described in sections below) in
the transgenics and wildtype (Supplementary Table 1) for
multiple linear regressions (equations 60–84, Supplementary

Data 2, Methods) to predict the effects of pathway flux and
metabolite concentrations on these wood properties. The final 84
equations (equations 1–84, Supplementary Data 2) represent the
quantitative relationships linking monolignol genes to transcripts,
proteins, predicted metabolic-flux, predicted metabolite concen-
trations, and 25 lignin and wood chemical and physical properties
(Fig. 2a–c).

Wood chemical properties. To quantify the effects of monolignol
gene perturbations on wood chemical properties, we analyzed
stem wood from 203 transgenics and 17 wildtypes. Wildtype
wood contains on average 21.7% lignin, 49.8% glucose, 16.2%
xylose, 2.8% mannose, and 1.0% galactose (%= g/100 g dry
wood), with a total carbohydrate to lignin ratio (C:L) of 3.2
(Supplementary Data 3). The C:L ratio is a direct indicator of the
potential maximum cellulosic yield for wood pulp and maximum
sugar yield for biofuels and other bioproducts. The levels of
monolignol gene expression significantly altered the wood com-
position; we observed broad variation of lignin content that
ranged from 9.4 to 25.0% (Fig. 5a). Glucose varied from 37.0 to
66.9% (Fig. 5b), xylose from 12.4 to 23.9% (Fig. 5c), mannose
from 0.0 to 4.9% (Fig. 5d), and galactose from 0.1 to 2.9%
(Fig. 5e, Supplementary Data 3, Supplementary Fig. 4). The C:L
ratios of the transgenics ranged from 2.5 to 8.8 (Fig. 5f),
demonstrating the feasibility of generating raw materials suitable
for a wide range of end uses. Consistent with our previous
finding13, lignin content showed a significant negative linear
relationship with total carbohydrate (Fig. 5g), having a slope of
−0.8 and a correlation coefficient of −0.4. Therefore, for every
1% reduction in lignin, the total carbohydrate increases on
average by ~0.8% (%= g/100 g dry wood).

Lignin from 68 transgenics and 8 wildtypes was analyzed by 2D
NMR to quantify lignin subunit composition and major interunit
linkages (Fig. 6, Supplementary Data 4, Supplementary Fig. 5,
Supplementary Fig. 6, Supplementary Note). Changing mono-
lignol gene expression significantly altered lignin composition. In
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Fig. 3 The abundance of the monolignol biosynthetic gene transcripts and proteins in transgenic P. trichocarpa lines. a Relative abundance of PtrPAL1
transcripts in the transgenic and wildtype P. trichocarpa. White bars represent PtrPAL1 transcript abundance in wildtype trees. Striped bars represent PtrPAL1
transcript abundance in transgenic lines targeting the downregulation of PtrPAL1. Gray bars represent PtrPAL1 transcript abundance in transgenic lines
targeting the downregulation of both PtrPAL1 and PtrPAL3. Black bars represent PtrPAL1 transcript abundance in transgenic lines targeting the
downregulation of all five PtrPALs. b The x-axis represents the genotypes of the transgenic lines, and the y-axis represents relative transcript (black bars)
and protein (gray bars) abundance to the average wildtype level. Error bars represent the standard error of at least three biological replicates
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the lignin of transgenics, S-subunits ranged from 11.0 to 74.8%,
G-subunits from 5.1 to 88.8%, H-subunits from 0.2 to 44.8%, p-
hydroxybenzoic acid from 1.4 to 14.8%, and S/G ratios from 0.12
to 9.9 (Fig. 6b–o, Supplementary Data 4, Supplementary Note).
The wide variation in lignin subunit composition also signifi-
cantly altered the interunit linkages. β-Ethers (β–O–4-ether
linkages) ranged from 76.9 to 95.9%, phenylcoumarans (β–5)
from 1.2 to 16.3%, resinols (β–β) from 1.4 to 12.7%,
spirodienones (β–1) from 0.0 to 3.5%, and cinnamyl alcohol
end-groups from 4.6 to 14.2% (Supplementary Data 4, Supple-
mentary Note).

Wood physical properties. The consequences of changing
monolignol gene expression on plant growth, wood mechanical
strength, and density has not previously been systematically
investigated in any tree species within a uniform genetic back-
ground. We measured the growth (height, diameter, and stem
volume) of 221 transgenic and wildtype lines (6-month-old).
Plant growth was significantly affected by the downregulation of
specific monolignol genes (Supplementary Data 5). Transgenics
downregulated in PtrHCT, Ptr4CL and PtrCCR families showed
severe growth reduction (Supplementary Data 5) that does not
correlate with lignin content. Some transgenics with low lignin,
such as PtrPAL transgenics with 9.4% lignin (%= g/100 g dry
wood) (i7-2-2, Supplementary Data 3) showed growth similar to
wildtype (i7-2-2, Supplementary Data 5). Growth is also not
associated with lignin subunit composition or specific linkages
(Supplementary Data 5), but the growth reduction has been
attributed to collapsed vessel elements14, transcriptional repro-
gramming15, and accumulation of chemical inhibitors16 in some
transgenics.

The MOE is a quantitative index of wood mechanical strength
and is widely used to guide solid wood and engineered wood
utilization. A higher MOE indicates that the wood is stiffer and
less prone to deformation. We measured MOE perpendicular to
the longitudinal axis for stem segments of 416 transgenic and
wildtype trees (Supplementary Data 6). Transgenic trees showed
broad variation of MOE that ranged from 355 to 6058 Mega-
Pascals (MPa), compared to the wildtype (3763 ± 121MPa)
(Supplementary Data 6). MOE is substantially affected by the

subunit content and composition of lignin. All transgenic trees
with reduced lignin showed proportional reductions in MOE
(Supplementary Data 3 and 6). Under conditions where total
lignin content does not change, an increase in hydroxycinna-
maldehyde units from 4.0 to 29.2% in lignin (i33-05, Supple-
mentary Data 4) resulted in a ~61% reduction in MOE (i33-05,
Supplementary Data 6).

Wood density (expressed as specific gravity, Supplementary
Data 7) is one of the most important properties of wood because
of its strong relationship to the yield and quality of wood
products17. The density of 213 samples of transgenic and wildtype
wood varied from 0.26 to 0.43 (wildtype= 0.36) (average density
for each line, Supplementary Data 7). Wood density and
mechanical strength (MOE) showed a positive correlation
(coefficient= 0.57) (Fig. 7a). Each 0.01 unit increase in wood
density corresponds to a 125MPa increase in MOE (Fig. 7a).
MOE per 0.01 unit increase in wood density for P. cathayana and
P. tomentosa are 120 and 125MPa, respectively, and averaged
166MPa across 16 diverse woody plant species18.

Saccharification efficiency and lignin. Wood is an attractive
resource for sustainable biofuel and biomaterial production.
However, the recalcitrant properties of lignin have impeded
enzymatic saccharification for biofuels and bioproducts. Acid
pretreatment is typically used to reduce lignin recalcitrance to
facilitate enzymatic saccharification, but the process is costly and
produces enzyme inhibitors19. Lowering lignin content reduces or
eliminates the need for chemical pretreatment20. The sacchar-
ification efficiency of 236 wood samples of the transgenics and
wildtype generated here was calculated from the quantities of
glucose and xylose (the two main sugars in hardwood species)
released from unpretreated or pretreated (Methods) wood sam-
ples (Fig. 7b–f). In unpretreated wildtypes, the saccharification
efficiency of releasing glucose from glucans (cellulose and glu-
comannan) is 24.8%, and xylose from xylans is 8.3% (Fig. 7c, d,
Supplementary Data 8). Unpretreated transgenic wood with
reduced lignin showed high glucan saccharification efficiencies,
up to 87.2% (Fig. 7c) and xylan up to 68.8% (Fig. 7d,
Supplementary Data 8). Without pretreatment, every 1% (%= g/
100 g dry wood) lignin content reduction results in a 3.5%
increase in glucose saccharification efficiency (Fig. 7c) and a 2.8%
increase in xylose efficiency (Fig. 7d). Pretreatment elevated the
saccharification efficiencies of wildtype wood from 24.8 to 47.6%
for glucose (Fig. 7e) and from 8.3 to 52.8% for xylose (Fig. 7f).
Pretreatment together with transgenic reduction in lignin content
further elevated wood saccharification efficiencies from 47.6 to
91.1% for glucose (Fig. 7e) and from 52.8 to 99.6% for xylose
(Fig. 7f). The glucan and xylan saccharification efficiencies are
strongly and negatively affected by lignin content whether the
wood is pretreated or not (Fig. 7b–f), consistent with previous
studies in alfalfa21 and Arabidopsis22. The efficiency in
P. trichocarpa is not significantly affected by the lignin subunit
composition or its linkage distribution (p > 0.01, Fig. 7b). Lignin
and sugar composition have been shown to influence sacchar-
ification efficiency in Arabidopsis22 and unpretreated alfalfa21.

Integrative systems analysis. We then systematically combined
the individual quantitative effects of changing monolignol gene
expression on protein quantity, predicted metabolic-flux, pre-
dicted metabolite concentration, lignin (content, subunit com-
position, and linkages), carbohydrates, growth, MOE, wood
density, and saccharification efficiency for an integrative analysis
(Fig. 2b). The analysis integrates 84 equations (Supplementary
Datas 2 and 9, Methods), describing and predicting the behavior
of the lignin biosynthetic pathway and the consequence of
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monolignol gene perturbations on the chemical and physical
properties of wood. We validated the predictive capabilities of the
analysis using five-fold cross-validation. The cross-validation
includes re-estimation of all transcript/protein constants (βi
values) and multiple linear regression parameters in the absence
of the validation data sets, thereby providing a validity check of
the entire integrative analysis. The training data sets and the
validation data sets (Fig. 8a) show similar R2 values, indicating
that the integrative analysis equations are not overfitting the
experimental data. With only transcript abundance as the input,
the validated integrative analysis accurately captured the variation
in lignin and wood properties of the transgenics and wildtype
(Fig. 9). The integrative analysis explained on average 82% of the
variation in lignin properties (Fig. 9a–m) and 72% for all 25 wood
properties (Fig. 9a–y). Lower variations (R2 of 0.40 and 0.44,

respectively) in glucose and total carbohydrates (Fig. 9q, s) were
explained, indicating that these traits are more strongly regulated
by mechanisms other than lignin biosynthesis. The analysis
predictions and the experimentally measured values showed
minimal bias (average bias= 0.96, Supplementary Table 3), sug-
gesting that our integrative analysis has high predictive power.
Quantitative estimation of the monolignol pathway fluxes and
metabolite concentrations is necessary for the multiple linear
regression equations to accurately predict lignin and wood
properties (Fig. 8b, Supplementary Note).

Strategic engineering of wood properties. Our integrative ana-
lysis (84 integrated equations, Supplementary Data 2) can guide
the strategic engineering of wood for better timber and more
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efficient conversion to pulp and liquid biofuels. High quality
timber is dense, strong, and resistant to pests and pathogens,
whereas wood pulp and saccharification benefit from reduced
wood recalcitrance and increased carbohydrate content. To
understand the extent and direction to which specific monolignol
genes or combinations of these genes affect lignin and other wood
properties, we used the integrative analysis to predict the con-
sequences of varying transcript abundance of a single monolignol
gene or a gene family, while all other gene transcripts remained at
wildtype levels (Fig. 10, Supplementary Data 10). Different genes
and gene families show distinct and specific effects on lignin and
wood properties (Fig. 10a, Supplementary Data 10, Supplemen-
tary Table 4, Supplementary Note). The effects of changing the
expression of an entire gene family are greater than the effects of
changing the expression of individual genes within a family
(Supplementary Data 10), which indicates that individual family
members are functionally redundant and maintain wildtype levels
of lignin and wood formation.

Our integrative analysis can be used to identify the best
approach for improving single or combinations of multiple lignin
and wood properties, while minimizing negative effects on

growth. For example, we identified perturbation approaches for
a maximal increase in three key properties, i.e., wood density,
saccharification efficiency, and the ratio of carbohydrate to lignin
(C:L), for more efficient biofuel and pulp/paper production,
without significant impact on growth. We analyzed all possible
combinations of monolignol gene perturbations, where each gene
family was either upregulated, downregulated or remained at
wildtype level (Methods). We then ranked these perturbations by
the extent of improvement over wildtype for their predicted
lignin and wood properties. For a single gene family perturbation,
the integrative analysis predicts that the downregulation of PAL
delivers the best overall improvement in wood quality. Compared
to wildtype, PAL downregulation by 95% is predicted to exhibit
~70% increase in glucose release and ~260% increase in xylose
release during saccharification, and ~60% increase in the C:L ratio
(Supplementary Data 10). To achieve maximal improvement in
all three key properties simultaneously, perturbation of multiple
gene families is needed. Downregulation of both PAL and
CCoAOMT genes by 95% (Fig. 10b) is predicted to increase wood
density by ~53% over wildtype, with ~75 and ~220% increase in
glucose and xylose release, respectively, and ~60% increase in the
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3–5 clonally propagated plants. MOE and wood density show a positive linear relationship with a correlation coefficient of 0.57. Linear regression shows
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C:L ratio (Fig. 10b). Downregulation of PAL, C3H and
CCoAOMT gene families is predicted to yield the best overall
wood quality (Fig. 10c), with ~41% increase in wood density,
~153 and ~456% increase in glucose and xylose release,
respectively, and ~140% increase in the C:L ratio (Fig. 10c).

Our integrative analysis provides a foundation for future work
to incorporate additional regulatory processes that affect lignin
and wood properties. For example, epigenetic and transcriptional
regulation of monolignol gene expression could be incorporated

to understand how developmental (e.g., G-lignin and S-lignin
cell-types) and genetic variation affect these properties. Novel
pathway components, such as the recently discovered caffeoyl
shikimate esterases23–25, could also be incorporated and may
further increase predictive power. To develop the designed
transgenic trees with predicted wood and growth properties for
utilization, field trials are essential to validate their viability. Field
data on key growth and development regulations linking lignin
and wood formation with environmental effects (i.e., biotic and
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abiotic stresses) could then be integrated into our analysis for a
more comprehensive strategic engineering of wood properties.

Discussion
Genetic perturbation of monolignol biosynthetic pathway
expands the range of variation in monolignol gene transcripts,
lignin and wood traits, and saccharification efficiencies, compared
to a natural population of P. trichocarpa26,27. Sufficient down-
regulation of any monolignol gene family can modify the prop-
erties of lignin and wood. In many cases, these gene-specific
downregulations also affect plant development. Specific combi-
natorial effects of changing the expression of multiple genes are
necessary for trait modifications to alleviate negative effects on
plant growth and adaptation. Our integrative analysis enables

strategic designs for such combinatorial effects. The analysis has
also indicated significant novel regulatory components that have
not yet been investigated, such as where transcripts and proteins
are not well correlated, and epistatic effects imply feed-back
regulation. Field testing of the analysis in transgenic Populus will
reveal more novel regulation associated with specific growth and
adaptation effects that can be incorporated into the engineering
designs. Our current integrative analysis is more directly applic-
able to wood formation in Populus spp. The applicability in other
economically important species, such as Eucalypts and pines,
remains to be determined. Monolignol biosynthetic pathway
genes and metabolic fluxes may vary broadly across genera. With
applicable multi-omics data, the integrative analysis approach
used here provides a unique strategy that would allow improve-
ments in multiple lignin and wood properties in any woody
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species. It also provides a general strategy for rigorous definitions
of other biological pathways that could lead to a more compre-
hensive understanding and description of plant metabolism,
growth, and adaptation.

Methods
Plant materials. P. trichocarpa genotype Nisqually-1 was used for all experiments.
Wildtype and transgenic trees were grown in ½ Miracle-Gro Soil (Scotts Miracle-
Gro products, Maysville, OH, USA) and ½ Metro-Mix 200 (Sun Gro, Bellevue,
WA, USA) in a greenhouse (16 h light/8 h dark cycle with supplementary light of
~300 µE m−2 s−1)28. Wildtype trees for transformation were 6 months old. All
transgenic and the corresponding wildtype trees in soil were grown in a greenhouse
for 6 months before harvest for characterization.

Constructs for transgenesis. Gene downregulation constructs were prepared for
individual genes, phylogenetic gene-pairs, and gene families. We designed three
types of RNAi constructs (types I–III, Supplementary Fig. 1a) and one type of
amiRNA construct (type IV, Supplementary Fig. 1a) for these downregulations.
Type I RNAi constructs can knock-down individual genes, such as only one xylem-
specific family member (e.g., PtrC3H3 or PtrCCR2) (Supplementary Table 1). Type
II RNAi constructs with two cDNA silencing fragments (S1 & S2) suppress mul-
tiple genes. A type III RNAi construct with four cDNA silencing fragments sup-
press more genes simultaneously. Type IV is an amiRNA construct used to knock-

down individual member within gene families that share high sequence similarities
(>85%), such as genes in the PAL and C4H families.

Using the downregulation of PtrPAL genes as an example, five amiRNA
constructs (Supplementary Table 1) were used to suppress each PtrPAL gene
independently. A P. trichocarpa miRNA gene, ptr-MIR408, was used as the
transgene to deliver the 21-nt mature amiRNA silencing sequence complementary
only to a specific target gene region for transcript cleavage (knock-down). Then a
type II RNAi construct (Supplementary Table 1) with two cDNA silencing
fragments (S1 & S2) was designed to suppress the paired PtrPAL1 and 3 genes.
Another type II RNAi constructs (Supplementary Table 1) was designed to
suppress the group of PtrPAL2, 4, and 5 genes. A type III RNAi construct
(Supplementary Table 1) with four cDNA silencing fragments was designed to
suppress all five PtrPAL genes simultaneously.

All of these constructs contained the pBI binary vector backbone. Its original
35S promoter was replaced by the xylem-specific promoter of Ptr4CL3, which we
named pBI121-4CLXP plasmid5. A xylem-specific promoter ensures that the
downstream transgene is specifically expressed in the wood-forming tissue of the
transgenic trees. To prepare the gene knockdown constructs, the original GUS
sequence of the pBI121-4CLXP plasmid was replaced by an RNAi or amiRNA
transgene.

To assemble the RNAi transgene that targets multiple genes, such as genes in
the same subgroup or all members of a gene family, one 150–300 bp sequence
sharing over 70% sequence similarity between different target genes but less than
70% with untargeted genes was selected and used as the RNAi sequence. Such an
RNAi sequence fragment was amplified from a cloned gene transcript sequence4. If
that RNAi sequence did not have sufficient similarity to all target genes (>70%),
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more than one similar sequence was prepared and then assembled by overlapping
PCR to form the type II and type III RNAi transgenes.

All RNAi fragments were amplified using primers with 3′ sequences that
contained appropriate restriction sites. The amplified fragments were digested with
restriction enzymes and assembled with a 600 bp GUS linker sequence (GL) to
form an antisense: GL: sense fragment as an RNAi transgene sequence and cloned
into an intermediate plasmid29. The assembled RNAi transgene fragments,
confirmed by sequencing, were subcloned into the pBI121-4CLXP plasmid to
replace the original GUS sequence5.

The amiRNA transgenes were prepared based on the Ptr-MIR408 transcript.
The original miRNA408 and miRNA408* sequences were replaced by designed
amiRNA and amiRNA* sequences using overlapping PCR4. All amiRNA sequences
were designed using the online program WMD (http://wmd.weigelworld.org)30

based on the genome of P. trichocarpa v1.0 (JGI). The amiRNA sequences were
designed using the “no off-target” option, i.e., the amiRNA had only one specific
binding site in the target gene and avoided any possible off-target sites in other
genes. AmiRNA* sequences and primer sets for integrating amiRNA and amiRNA*
sequences into an amiRNA gene backbone were designed using the WMD
program’s oligo function under the vector option RS3000 (MIR319a). To integrate
the designed amiRNA and amiRNA* sequences into the Ptr-MIR408 transgene
backbone, primer sets were modified by replacing the vector sequence of Ath-
MIR319a (RS300 vector) with that of Ptr-MIR408. pBI121-based amiRNA
expression binary vectors were assembled following Shi et al. (2010)31, except that
the promoter-specific forward primer was designed for the xylem-specific promoter
of the Ptr4CL3 gene5. Transformation construct for simultaneously overexpressing
PtrCAD2 and downregulating PtrCAD1 (type O, Supplementary Table 1) was
prepared by the insertion of full-length PtrCAD2 coding sequence after the 4CLXP,
and the cassette containing 4CLXP-PtrCAD2-NosT was inserted into the PtrCAD1
(type I) construct. All binary constructs were introduced into Agrobacterium
tumefaciens C58 for plant transformation28.

Transgenic plant production. P. trichocarpa genotype Nisqually-1 was trans-
formed to downregulate genes for monolignol biosynthesis by Agrobacterium
transformation28 and RNAi or amiRNA constructs (Supplementary Fig. 1a)30

listed in Supplementary Table 1. To confirm positive transgene insertions, genomic
DNA of putative plantlets was extracted from young leaf tissues using the Qiagen
DNeasy Plant Mini Kit (Invitrogen/Life Technologies, Grand Island, NY). PCR
assays using promoter forward primers and transgene-specific reverse primers were
conducted for the putatively transformed plantlet along with a positive control, the
transformation vector plasmid DNA, and a negative control, the genomic DNA
from a wildtype tree. For each construct, we produced ~15 independent transgenic
lines. Two vegetatively propagated copies of each line were grown in a greenhouse,
and 6-month-old trees were analyzed by qRT-PCR to quantify the levels of target
gene knock-down. To select transgenic lines that exhibit different levels of knock-
down gene expression, stem-differentiating xylem tissues of transgenic lines of 6-
months-old greenhouse-grown trees were collected for RNA extraction. Stem-
differentiating xylem was scraped from the surface of the debarked stems using
single-edge razor blades32,33. The collected tissues were frozen and ground into
powder in liquid nitrogen. Total RNA was extracted using the Qiagen RNeasy Mini
Kit (Invitrogen/Life Technologies, Grand Island, NY). Target gene transcript
abundance was analyzed using qRT-PCR as in our previous studies4. Three to
fourteen independent transgenic lines were selected per construct to represent
varying levels of target gene expression. The selected lines were propagated to 9–15
copies each in the greenhouse. In this way, we produced ~2000 transgenic P.
trichocarpa trees for our integrative analysis. All transgenic trees were grown in the
greenhouse along with wildtype controls under the same conditions29. The same
tissue and wood samples for each transgenic line and wildtype were used for all
analyses (RNA, protein, and wood) (sections below).

Six-months-old trees were harvested for characterization. For each line, three
biological replicates were collected; each replicate was a pool of 3–5 clonally
propagated trees. Fresh stem-differentiating xylem tissues were collected and stored
in liquid nitrogen for analysis by RNA-seq and absolute protein quantification. The
corresponding wood samples were collected for quantification of MOE, wood
density, lignin content and composition, 2D NMR, wood composition and
saccharification efficiency. The transgenic trees were produced and harvested in
batches at different times each with wildtype controls, which were used to
normalize data collected from different batches (Supplementary Note).

Quantitative estimation of transcript abundance by RNA-seq. Total RNA from
each replicate pool (containing 3–5 clonally propagated trees) was extracted using
the RNeasy standard protocol (Qiagen, Valencia, CA). Each RNA sample was
tested for concentration and purity using a NanoDrop spectrophotometer (Thermo
Scientific, Wilmington, DE). The preparation of RNA libraries for sequencing
followed Li et al. (2012)34, using the TruSeq RNA sample preparation kit (Illumina,
San Diego, CA). The RNA libraries were pooled for multiplex sequencing using the
Illumina GAIIx platform (Genomic Sciences Laboratory, North Carolina State
University, Raleigh, NC). We mapped the FASTQ files from the Illumina GAIIx
onto the genome of P. trichocarpa v3.03,35–37, using Bowtie38 and Tophat39. BAM
(Binary Sequence Alignment/Map) files were converted to raw counts using Bed-
Tool40, and normalized read counts were obtained using the Trimmed Means of M
values35–37,41.

Protein quantification by PC-IDMS. Total protein extracts were isolated from
stem-differentiating xylem and processed using filter-aided sample preparation9.
The absolute protein abundance of the monolignol biosynthetic enzymes was
measured by PC-IDMS using a C18 column (75 µm × 15 cm), reversed phase
nanoLC and selected reaction monitoring on a TSQ triple quadrupole mass
spectrometer (Thermo Scientific, San Jose, CA)9. The spectral data was processed
and integrated using Skyline42 to determine the absolute quantities of proteins in
stem-differentiating xylem.

Wood chemistry analysis of transgenics and wildtype. After stem-
differentiating xylem tissue collection for RNA and protein isolation, the remaining
wood stem segments (devoid of internodes 1–5) from the same transgenic and
wildtype trees were used for wood chemistry analysis. The stem segments were
extracted with 90% acetone for 48 h, followed by three additional extractions (each
48 h) using 100% acetone, and air-dried. The extractive-free stem segments were
ground to a fine powder using a Wiley mill and sieved to 40–60 mesh and vacuum
dried over P2O5. Acid-insoluble lignin and acid-soluble lignin contents were
determined following the Klason procedure43. Sugars in the acid-soluble lignin
fractions were quantified by a gas chromatography-flame ionization detector (GC-
FID 7890A; Agilent, Santa Clara, CA)43, or neutralized using CaCO3, filtered
through a 0.2 µm PVDF membrane (Pall Corporation, Port Washington, NY), and
analyzed by an Infinity 1200 HPLC (Agilent, Santa Clara, CA). Pure compounds of
glucose, galactose, xylose, mannose, and arabinose (Sigma, St. Louis, MO) were
used as standards. The sum of lignin and sugar contents averages 91.6% (%= g/
100 g dry wood) for wildtype trees; the uronic acid and acetyl contents in wood
likely account for much of the remainder.

Quantification of lignin composition and interunit linkages. To ensure that we
analyzed essentially the entire lignin fraction of the wood, we utilized nothing more
than enzymatic saccharification and did not attempt to further purify the lignin,
utilizing the power of the whole-cell-wall 2D NMR methods44,45 to resolve com-
ponents and extract data. To enrich lignin from the wood samples of transgenics
and wildtype for 2D NMR analysis, extractive-free wood samples were ground to
40–60 mesh and vacuum dried under P2O5. The wood samples were then milled
using a Pulverisette 7 Planetary Micro Mill (Fritsch, Idar-Oberstein, Germany) at
600 rpm, with six cycles of 30 min on and 15 min off. The milled samples were
incubated with cellulase (Sigma C9422, St. Louis, MO) in the ratio of 1 g wood per
450 units of cellulase, for 48 h at 48 °C. The samples were washed twice with an
acetate buffer (pH 4.5, 20 mM), followed by two more washes using distilled water,
and were freeze dried. The lignin samples were analyzed without further pur-
ification to retain the entire lignin without fractionation. The lignin samples were
dissolved in DMSO-d6/pyridine-d5 (4:1, v/v), then analyzed by a 700MHz Bruker
NMR instrument fitted with a cryoprobe for improved sensitivity44. S, G, H, and p-
hydroxybenzoic acid levels were determined by integrating the H2/C2 correlations
using Bruker’s Topspin 3.5 software (and expressing on an S+G+H= 100%
basis); relative interunit linkage levels were from integrating Hα/Cα correlations
and are expressed on the basis of the sum of the (β–O–4)+ (β–5)+ (β–β)+ (β–1)
levels45.

Quantification of wood modulus of elasticity. Three 20-cm long stem sections
were cut from the base of each transgenic and wildtype sample. The stem sections
were kept in sealed plastic bags to prevent drying. The stem sections were cut to a
length-to-width ratio of 16:1 and analyzed using a three-point bending test46 by a
universal mechanical tester (MTS Insight, Eden Prairie, MN) to measure the MOE.

Quantification of wood density. One-inch thick disks were cut from the base of
each stem and were used to measure wood density (specific gravity) of each tree
using the water displacement method47. Samples were weighed, dried in an oven at
103 ± 2 °C overnight and the oven dry mass measured. The density was calculated
following the ASTM standards (D2395)47.

Wood pretreatment and enzymatic hydrolysis. Extractive-free wood samples
from wood chemistry analysis were either (1) subjected to hot-water pretreatment
at 180 °C for 5 min in 96-well reactor plates (pretreated, see below), or (2) without
pretreatment (unpretreated) prior to enzymatic hydrolysis. Enzymatic hydrolysis of
unpretreated and pretreated samples was carried out using a high-throughput
pretreatment and incomplete-saccharification hydrolysis technique to allow com-
parisons48. Briefly, 5 ± 0.3 mg dry extractive-free wood was weighed into custom-
made 96-well Hastelloy reactors with Mobile Tool Management robotics (FreeSlate,
Sunnyvale, CA). The reactor plates were sealed and pretreated (5 min at 180 °C)
after 250 µL of water was added to each well. After cooling, 40 mL of CTec2
cellulase (Novozymes, Franklinton, NC) diluted in 1.0 M citrate buffer pH 5.0 was
added to each well to a final loading of 70 mg protein/g glucan. For unpretreated
samples, CTec2 was added directly to the reactor plates at the same concentrations
as the pretreated samples. The reactor plates were sealed, and the enzymatic
hydrolysis was performed at 50 °C for 70 h. The released glucose and xylose in the
supernatants were quantified by sugar-specific oxidation-reduction assays48. For
each independent wood sample, three analytical replicates were performed. Sugar
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release data were reported as weight percentage (wt%) of cell wall residues48 and
then converted to % of total glucose or xylose content.

Normalizing transcript and protein abundances and regression. We collected
stem-differentiating xylem tissues in six separate batches at different times. Each
batch of transgenic trees was planted with wildtype controls. We normalized the
RNA-seq read counts of specific transcript and the quantities of specific peptides
against the average of three replicates of wildtype in each batch (Supplementary
Fig. 3). Linear regression for the transcript (predictor) and protein (dependent
variable) abundances of the monolignol biosynthetic pathway genes in the stem-
differentiating xylem of wildtype and transgenic P. trichocarpa was performed
using JMP software (JMP®, Version 12, SAS Institute Inc., Cary, NC, 1989–2007).

Integrative analysis. The integrative analysis is represented by equations 1 to 84
(Supplementary Data 2), coded in MATLAB (Supplementary Data 9). There are
three main components to the integrative analysis (1–3, Fig. 2b): (1) the transcript/
protein equations (2) the mass-balance kinetic equations and (3) the multiple linear
regression equations used to predict the phenotypes (Fig. 2c). The integrative
analysis is based on wood formation that consists of a mix of different cell types
(fiber, vessel, and ray cells).

Transcript/protein equations. The integrative analysis takes the absolute transcript
abundances as the input to predict protein abundances using simple linear
regressions (βi values, Supplementary Table 2). The simple linear regressions were
constrained to intercept 0 (i.e., zero transcript= zero protein). The absolute
transcript abundances in µM were estimated from the RNA-seq libraries49. Briefly,
the raw read counts were normalized to reads per kilobase per million mapped
reads, and calibrated to µM using monolignol transcript abundances determined
from qRT-PCR of wildtype P. trichocarpa stem-differentiating xylem49. The pre-
dicted protein abundances were used as the input for the mass-balance kinetic
equations.

Mass-balance kinetic equations. The mass-balance equations by Wang et al. (2014)5

assumed independence between the monolignol enzyme functions5. However, we
showed that the two Ptr4CL isoforms (Ptr4CL3 and Ptr4CL5, Fig. 1), each with
distinct kinetic and inhibitory properties, form a heterotetrameric protein complex
in vivo in the ratio of 3:112. This 4CL protein complex affects the specificity and
reaction rates of CoA ligation (fluxes 7 to 11, Fig. 1)12, improves the stability/
robustness of the pathway50, and constitutes an important component of metabolic
regulation12. Therefore, we modified the mass-balance equations from Wang et al.
(2014)5 to include the updated flux equations from Chen et al. (2014)12 and Lin
et al. (2015)7, which incorporate the heterotetrameric 4CL protein complex for
fluxes 7 and 8 (Fig. 1), and the associated complex enzyme inhibition kinetics. The
modified equations (equations 21 to 59, Supplementary Data 2) were coded into
MATLAB 2015b using the ordinary differential equation solver (ODE15s) to
predict pathway metabolic-fluxes and metabolite concentrations. We presented
evidence that three monolignol cytochrome P450 monooxygenases (PtrC4H1,
PtrC4H2, and PtrC3H3) interact to form heteromeric protein complexes51.
However, mass-balance kinetic equations that describe these interactions were not
part of the integrative analysis because they are difficult to determine, and bio-
chemical techniques are not currently available to assay the membrane-bound
enzymes at different molar ratios. To determine the initial conditions, we used
MATLAB and equations 21 to 59 to solve for the phenylalanine concentration
when wildtype S/G ratio is 2.16 (equivalent to fluxes V35/V34, Fig. 1), a quantity
based on our 2D NMR analysis of isolated lignin from the stem-differentiating
xylem of wildtype P. trichocarpa (Supplementary Data 4). MATLAB shows that a
phenylalanine concentration of 1.4 µM is necessary to produce a wildtype S/G ratio
of ~2.16. The remaining metabolite concentrations vary dynamically in MATLAB
until a steady-state is reached. The simulation time was set from 0 to 10,000 s,
which provides sufficient time for the metabolic-fluxes and metabolite con-
centrations to reach steady-state values. We tested 10,000 sets of random initial
metabolite concentrations (Latin Hypercube Sampling) to determine all possible
steady-states and found 92% of all simulations settled at the same steady-state,
suggesting that the pathway is robust to changing initial conditions. 4-Coumaryl
alcohol (20, H-subunit precursor, Fig. 1), coniferyl alcohol (22, G-subunit pre-
cursor), and sinapyl alcohol (24, S-subunit precursor) are formulated as precursors
of the terminal products (H, G, and S-subunits) that accumulate over the course of
the flux analysis.

Multiple linear regressions. Using JMP Pro 12 (SAS Institute Inc., Cary, NC), an all-
possible-model approach was used to determine which of the metabolites and
metabolic-fluxes are the best linear predictors for each of the lignin and wood
properties. The all-possible-model approach tests all combinations of metabolites
and fluxes as predictors to identify the best multiple linear regressions (equations
60 to 84, Supplementary Data 2) that exhibit global minima in the corrected
Akaike’s information criterion (AICc). To reduce multicollinearity, metabolites and
fluxes with correlation coefficients >0.95 were omitted from the multiple linear

regressions. The predicted lignin and wood properties from the multiple linear
regressions are restricted to non-negative values, and the properties that have the
unit of percentage (e.g., β–O–4 linkages) are restricted to a maximum value of
100%.

Integrative analysis validation. The integrative analysis was validated using 5-
fold cross-validation. For the 5-fold cross-validation, each of the 239 transgenic and
wildtype lines was randomly sorted into five approximately equal sized groups.
Using JMP Pro 12 (SAS Institute Inc., Cary, NC), an all-possible-model approach
was used to determine which of the metabolites and fluxes were the best linear
predictors for each group, based on the lowest AICc value. The all-possible-model
algorithm re-estimates all regression parameters including the transcript/protein βi
values and the multiple linear regression constants. To prevent the algorithm from
choosing fluxes and metabolites with very small values and assigning them a very
large scaling factor, the metabolite concentrations and fluxes were rounded to five
decimal places for this process. The predictors that yield the lowest AICc value
were chosen to be included in the integrative analysis (Supplementary Data 2).

Direct validation of metabolite concentrations and metabolic-fluxes derived
from the mass-balance equations (equations 21–59, Supplementary Data 2) is not
possible because there is no reliable extraction technique that permits the
quantitation isolation of monolignol pathway metabolites. We have investigated
extensively the quantification of monolignol pathway metabolites in vivo, by
synthesizing stable-isotope-labeled standard compounds and using advanced LC-
MS/MS systems. Our analysis confirmed that monolignol pathway metabolites
could not be reliably extracted from wood forming tissues for quantification.
Similarly, metabolic-fluxes for monolignol biosynthesis cannot be validated
experimentally, due to the complex enzyme inhibitory network that regulates the
pathway. These technical difficulties have long prohibited the use of metabolite
concentrations and metabolic-fluxes for experimental validation. The most direct
means of validating the integrative analysis is by association to the content,
composition, and linkage structures of lignin, which we applied in our five-fold
cross-validation. Cross-validation is suitable here because its re-sampling technique
allows for efficient use of all available data and provides a robust estimation of the
validity of predictions with minimal bias and variability. Considering the
integrative analysis is based on ~2000 transgenic trees, a small independent
experiment would be insufficient to provide an adequate validation.

Genetic engineering strategies for optimal wood properties. To identify the
optimal approaches for improving any single or combination of lignin and wood
properties, we used the integrative analysis to investigate all possible combinations
of monolignol gene perturbations. Each gene family transcript abundance was
either (1) upregulated to 1000% of the wildtype level, (2) retained at the wildtype
level, or (3) downregulated to 5% of the wildtype level. Gene upregulation by
1000% is an estimate of the level of gene-specific overexpression feasible by
transgenesis, and represents an extrapolated projection of how increasing mono-
lignol gene expression affects lignin and wood traits. Such extrapolation is outside
of the experimental data and should be interpreted with caution. In silico gene
perturbations were limited to a simultaneous modification of one, two, or three
gene families. Untargeted gene families were set at the wildtype level because
indirect effects were not included in the integrative analysis equations (Supple-
mentary Data 2). A total of 1161 unique combinations of monolignol gene family
perturbations were tested using the integrative analysis (equations 1 to 84, Sup-
plementary Data 2). The predicted lignin and wood properties were then indivi-
dually ranked from the highest value to the lowest, or vice versa, depending on the
desired traits. The gene perturbations that produced the most desired traits were
reported in Fig. 10a. For maximal improvement of multiple lignin and wood
properties, the best perturbation approaches were identified by ranking each pre-
dicted outcome based on the extent of the overall improvement over wildtype for
the specific desired properties. To do this, we applied proportional scoring52 to
each predicted outcome using the equation:

XN

i¼1

ðpredicted propertyi � desired propertyiÞ2

Where N represents the number of desired properties. The scores were then ranked
from the lowest value (most desired outcome) to the highest (least desired out-
come) to identify the best perturbation approaches (Fig. 10b, c).

Data availability. The RNA-seq libraries are available under GEO accession
number GSE78953. Proteomics, MOE, wood density, 2D NMR, plant growth, and
wood chemistry data sets are available on CyVerse [http://mirrors.
iplantcollaborative.org/browse/iplant/home/shared/LigninSystemsDB]. Correspon-
dence and requests for materials should be addressed to V.L.C. (vchiang@ncsu.
edu).
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